D-277 Dental Physiology Quiz 4 Wednesday, June 3, 2009

a.*		
Name	Student Number	
	(0.25 pts. for each correct answer)	

QUESTIONS 1-3 ONLY: Use the following table to answer questions 1-3.

VARIABLE	PATIENT'S VALUES	NORMAL VALUES
FEV _{1 sec} . (% of VC)	53	>75
% Hemoglobin Saturation	89	>97
P _a CO ₂ (mmHg)	42	40
P _a O ₂ (mmHg)	58	100
Compliance (Liters/cmH₂O)	0.6	0.2

- 1. Because the compliance of this patient is above normal, you would expect TLC to be:
 - a. *Above normal
 - b. Below normal
 - c. Normal
- Is this patient hypoxic and hyperventilating?
 - a. Yes, this is supported by the data.
 - b. *No, the data indicate that the patient is hypoxic and hypoventilating.
 - c. No, the data indicate that the patient is normoxic and hyperventilating.
 - d. No, the data indicate that the patient is hypoxic but is neither hyper nor hypoventilating.
- 3. FEV1 sec. indicates that the patient:
 - Would experience dynamic compression close to the alveoli (compared to normal) when she tried to forcefully exhale.
 - May have serious issues with respect to air trapping.
 - c. Probably has an obstructive pulmonary pathology.
 - d. *All of the above are correct choices.
- 4. What is the data that indicates that gas transfer of a certain gas is diffusion limited and not perfusion limited?
 - a. That the partial pressure of the gas in the blood being aerated by the alveoli comes into equilibrium with the partial pressure of the gas in the alveoli.
 - b. *That the partial pressure of the gas in the blood being aerated by the alveoli remains below the partial pressure of the gas in the alveoli.
 - c. That the partial pressure of the gas in the blood being aerated by the alveoli becomes higher than the partial pressure of the gas in the alveoli.
 - d. None of the above is correct.
- 5. Slowly adapting PSR's (pulmonary stretch receptors) prevent the adult lung from over-expanding.
 - a. *True.
 - b. False.

In the paracellular route for Na⁺ reabsorption in the proximal tubule, how do the Na⁺ ions move from the tubular fluid to the basolateral spaces?

- A. *They diffuse through the tight junctions to the basolateral space as they follow CI- ions to maintain electroneutrality
- B. They enter the epithelial cells by Na+/H+ exchange and are pumped to the basolateral spaces by the Na+ pumps
- C. They enter the epithelial cells by Na+, glucose co-transport and are pumped to the basolateral spaces by the Na+ pumps
- D. They enter the epithelial cells through Na+ channels in the apical membrane and are pumped to the basolateral spaces by the Na+ pumps

The flow rate of the tubular fluid passing from the proximal tubule to the descending limb of the loop of Henle is usually about

- A. 80% of the glomerular filtration rate
- B. 67% of the glomerular filtration rate
- C. *33% of the glomerular filtration rate
- D. 20% of the glomerular filtration rate
- E. 1% of the glomerular filtration rate

A 25-year-old man has a hematocrit of exactly 50%. He eats several grams of NaCl without drinking any liquids and this causes 1 liter of water to shift from his intracellular fluid to his extracellular fluid. What effect will this have on his **blood** volume?

- A. His blood volume will increase because of his increased plasma volume.
- B. His blood volume will decrease because of the decreased volume of his blood cells.
- C. *His blood volume will not change because the increase in his plasma volume is equal to the decrease in the volume of his blood cells.

If a man's GFR is 120 ml/min, his plasma glucose concentration is 150 mg/dL (1.5 mg/ml), and there is no glucose in his urine, which is a possible value of his glucose reabsorption rate under these conditions?

- A. 120 mg/min
- B. 150 mg/min
- C. *180 mg/min
- D. 375 mg/min
- E. 900 mg/min