Dental Physiology Quiz 1
Monday, April 28, 2008
Cell Processes, Dr. Driska

Name (please print)	
---------------------	--

- 1. My chewing gum contains xylitol, a 5-carbon sugar alcohol sweetener that should not cause cavities. Xylitol is a hydrophilic nonelectrolyte, has a molecular weight of 152 grams per mole, and cannot diffuse across the cell membrane; in other words, σ=1. Which of these solutions containing xylitol will be isotonic? (In other words, in which solution will a cell maintain its normal volume?)
 - A. 145 mM xylitol ($\sigma = 1$)
 - B. *290 mM xylitol ($\sigma = 1$)
 - C. 580 mM xylitol ($\sigma = 1$)
 - D. 145 mM xylitol ($\sigma = 1$) plus 290 mM urea ($\sigma = 0.2$)
 - E. 580 mM xylitol ($\sigma = 1$) plus 290 mM urea ($\sigma = 0.2$)
- 2. Use the Nernst equation to calculate the K^+ equilibrium potential for a cell under these conditions: intracellular $[K^+] = 150$ mM; extracellular $[K^+] = 3.0$ mM; temperature = 37 °C
 - A. $E_K = +60 \text{ mV}$
 - B. $E_K = 0 \text{ mV}$
 - C. $E_{K} = -55 \text{ mV}$
 - D. $E_{K} = -90 \text{ mV}$
 - E. $*E_K = -104 \text{ mV}$

PROPERTY of XI PSI PHI

- 3. In red blood cells there is a countertransporter called the chloride-bicarbonate exchanger that moves 1 Cl ion in one direction and 1 HCO₃ ion in the opposite direction. Which is a <u>true</u> statement about this transporter?
 - A. This is an electrogenic transporter.
 - B. *The value of the cell's membrane potential will not affect the transport rate of these ions.
 - C. If Cl⁻ is absent, HCO₃ can still be transported by this protein.
 - D. If HCO₃ is absent, Cl can still be transported by this protein.
- 4. The distance that an average solute molecule moves by diffusion in free solution in a given time is expressed by this relationship: $\overline{\Delta x} = \sqrt{2Dt}$ If a solute moves an average distance of 20 µm in 10 milliseconds, how far would it move, on average, in 20 milliseconds?
 - A. 10 μm
 - B. 14.14 μm
 - C. 20 μm
 - D. *28.28 μm
 - E. $40 \mu m$