corrected

D-277 Dental Physiology Quiz 1 Monday, April 25, 2005

1. Diffusion of a nonelectrolyte is being studied in a laboratory apparatus under the conditions shown in the table. Which of the following experiments, **a**, **b**, **c**, or **d**, will have the same net flux as experiment #1? The diffusion coefficient (D) is the same for all.

	Concentration,	Concentration,	Membrane
	side 1	side 2	thickness
Experiment #1	20 mM	10 mM	1 mm
Experiment a	40 mM	20 mM	0.5 mm
Experiment b	30 mM	20 mM	2 mm
Experiment c	40 mM	20 mM	2 mm
Experiment d	200 mM	100 mM	2 mm

a. Experiment a

b. Experiment b

(*c.) Experiment c

d. Experiment d

2. Use the Nernst equation to calculate E_{Cl} (the Nernst equilibrium potential for Cl⁻) under these conditions: [Cl⁻]_{outside} = 100 mM; [Cl]_{inside} = 20 mM; temperature = 37°C. E_{Cl} is:

(*a.) -42.6 mV

b. +42.6 mV

c. -98.2 mV

d. +98.2 mV

3. Calculate the resting membrane potential (E_m) for a cell that is only permeable to Na⁺ and K⁺. The cell's K⁺ conductance (g_N) is 30 nanoSiemens and its Na⁺ conductance (g_N) is 10 nanoSiemens. Assume that E_N = +60 mV and E_K = -90 mV. E_m is:

a. -82.5 mV

b. -75 mV

*c.) -52.5 mV

d. +60 mV

- 4. Suppose a normal red blood cell has a volume of 100 picoliters when in whole blood, and then it is removed and placed in a large volume of each of the solutions below. In which of these solutions will the cell volume be the closest to its volume in normal blood?
 - a. 580 mM sucrose ($\sigma = 1.0$)
 - b. 580 mM urea ($\sigma = 0.2$)
 - c. 100 mM NaCl ($\sigma = 1.0$)
 - (*d.) 145 mM NaCl plus 100 mM urea